Contributions of HiFace & SD-DeTail

- Model the static and dynamic details explicitly, demonstrate the benefits of synthetic data in detailed 3D face reconstruction.
- Novel loss functions to learn 3D representations of coarse shape and fine details simultaneously from both the synthetic and real-world images.
- SOTA reconstruction quality both quantitatively and qualitatively, with over 15% performance gains in the region-aware benchmark.
- Easy to plug-and-play into optimization-based methods and can transfer expressions and details from one to another for face animation.

Overview of HiFace

- **Reconstruction:** given a single image, HiFace faithfully reconstructs a coarse shape (2nd-row) with vivid details (3rd-row).
- **Animation:** given a source image, HiFace can animate the static (4th-row), dynamic (5th-row), or both (6th-row) details of the driving images.

Model Architecture

- Given (a), an image (top) to reconstruct its coarse shape (bottom), we formulate the detail as (b), a static factor and (c), a dynamic factor interpolated by polarized states w.r.t. compressed (top) and stretched (bottom). (d), the output displacement map is linearly combined by (b) and (c) to present vivid details.

Train HiFace with Synthetic Images & Real-world Images

Static and Dynamic Detail Losses: $\mathcal{L}_{\text{detail}} = \mathcal{L}_{\text{norm}} + \mathcal{L}_{\text{com}} + \mathcal{L}_{\text{ext}}$

Coarse Shape Losses: $\mathcal{L}_{\text{shape}} = \mathcal{L}_{\text{norm}} + \mathcal{L}_{\text{com}}$

Self-supervised Losses: $\mathcal{L}_{\text{sup}} = \mathcal{L}_{\text{norm}} + \mathcal{L}_{\text{com}} + \lambda_{\text{dis}} \mathcal{L}_{\text{dist}}$

Knowledge Distillation: \mathcal{L}_{kd}

Regularization: \mathcal{L}_{reg}

3D Face Reconstruction Comparisons

Flexibility of SD-DeTail

- Given a source image, we use the driving image to drive its expressions. DECA and EMOCA can animate the expression-driven details but lack realistic.

- As a comparison, HiFace is flexible to animate details from static (4th-row), dynamic (5th-row), or both (6th-row) factors, and presents vivid animation quality with realistic shapes.